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Abstract

A least-squares spectral collocation scheme for the Stokes and incompressible Navier–Stokes equations is proposed.
The original domain is decomposed into quadrilateral subelements and on the element interfaces continuity of the func-
tions is enforced in the least-squares sense. The collocation conditions and the interface conditions lead to overdetermined
systems. These systems are directly solved by QR decomposition of the underlying matrices. By numerical simulations it is
shown that the direct method leads to better results than the approach with normal equations. Furthermore, it is shown
that the condition numbers can be reduced by introducing the Clenshaw–Curtis quadrature rule for imposing the average
pressure to be zero. Finally, our scheme is successfully applied to the regularized and lid-driven cavity flow problems.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Spectral methods (see, e.g. [6,9,22] or [7]) employ global polynomials for the numerical solution of differ-
ential equations. Hence they give very accurate approximations for smooth solutions with relatively few
degrees of freedom. For analytical data exponential convergence can be achieved. If one deals with problems
with non-smooth solutions (e.g. discontinuities or layers) the usual (global) continuous spectral approach
yields very poor approximation results. To avoid these difficulties the original domain has to be decomposed
into several subdomains where jumps at the interfaces are allowed, i.e. there is the possibility to make the solu-
tion discontinuous between neighboring elements. These are the so called discontinuous Galerkin methods
and as a very special case, there are the discontinuous least-squares approaches. Gerritsma and Proot showed
in [10] the good performance of discontinuous least-squares spectral element methods. Furthermore, Bensow
and Larson showed the good performance of discontinuous least-squares finite element methods in [1,2]. In
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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[13] we extended the above approach to one-dimensional singular perturbation problems where the least-
squares spectral collocation schemes lead to a stabilization. Heinrichs extended the in [14] proposed least-
squares spectral collocation method to a triangular decomposition [16] of the original domain and achieved
good numerical results. Here we extend the method to a decomposition in quadrilaterals of the original
domain and apply these scheme to the two-dimensional Stokes and incompressible Navier–Stokes equations.
The collocation conditions together with the interface and boundary conditions lead to an overdetermined sys-
tem that can be approximately solved by least-squares. The essential enhancements of the here introduced
scheme is the increased accuracy because of the use of a direct solver. For the overdetermined system we com-
pute the QR decomposition of the associated matrix and solve the system. Because of avoiding the normal
equations we obtain linear systems of equations with dramatically reduced condition numbers and so
round-off errors do not have such a big influence to the approximation results.

For the Stokes and Navier–Stokes problems the velocity and the pressure cannot be approximated indepen-
dently due to the well known Babus�ka–Brezzi condition. If the velocity and the pressure are approximated by
polynomials of the same degree eight spurious modes are introduced which lead to an unstable system (see [3]).
A well-known compatible approximating velocity–pressure pair is the so-called PN � PN�2 formulation (see
e.g. [31]). Heinrichs [11,12] employed this technique for the splitting of the Stokes and Navier–Stokes equa-
tions. There the velocity components are approximated by polynomials in PN and the pressure by two degrees
lower order polynomials in PN�2. The resulting discrete system constitutes a saddle point problem which is
difficult to solve numerically.

Least-squares techniques for such problems (see, e.g. [17–20]) offer theoretical and numerical advantages
over the classical Galerkin type methods which fulfill the well-posedness (or stability) criterion, the so called
LBB condition. One very special least-squares technique is the spectral least-squares method. These spectral
least-squares methods for the Stokes problem were first introduced by Gerritsma and Proot in [27,28]. Spectral
least-squares for the Navier–Stokes equations were first presented by Pontaza and Reddy in [24–26], followed
by Gerritsma and Proot in [29]. Heinrichs investigated least-squares spectral collocation schemes in [14–16]
that lead to symmetric and positive definite algebraic systems which circumvent the LBB stability condition.
Since we here work on least-squares spectral collocation schemes we want to summarize some advantages of
this approach:

� equal order interpolation polynomials can be employed;
� it is possible to vary the polynomial order from element to element;
� improved stability properties for small perturbation parameters in singular perturbation problems [8,13]

and Stokes or Navier–Stokes equations [14–16,27–29];
� good performance in combination with domain decomposition techniques;
� direct and efficient iterative solvers for positive definite systems can be used;
� implementation is straightforward.

The paper is organized as follows. In Section 2, the first-order formulation of the Stokes and Navier–Stokes
equations is introduced. Then we describe the least-squares spectral collocation scheme, specify the domain
decomposition (Section 3) and describe the discrete linear system of equations (Section 4). Section 5 presents
the numerical simulations with the results for the Stokes (Section 5.1 and 5.2) and for the Navier–Stokes equa-
tions (Section 5.3: smooth example, Section 5.4: regularised cavity flow, Section 5.5: lid-driven cavity flow).
Finally, a conclusion is presented.

2. The Stokes and Navier–Stokes equations

In order to apply least-squares the Stokes and Navier–Stokes problem is transformed into an equivalent
first-order system of partial differential equations. This is accomplished by introducing the vorticity
x ¼ r� u as an auxiliary variable. By using the identity
r�r� u ¼ �Duþrðr � uÞ

and the incompressibility constraint r � u ¼ 0 we obtain
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ou

ot
þ mr� xþrp ¼ f in X; t 2 ½0; tend�; ð1Þ

r � u ¼ 0 in X; t 2 ½0; tend�; ð2Þ
x�r� u ¼ 0 in X; t 2 ½0; tend� ð3Þ
for the Stokes equations and for the Navier–Stokes equations we obtain
ou

ot
þ u � ruþ mr� xþrp ¼ f in X; t 2 ½0; tend�; ð4Þ

r � u ¼ 0 in X; t 2 ½0; tend�; ð5Þ
x�r� u ¼ 0 in X; t 2 ½0; tend�; ð6Þ
where uT ¼ ½u1; u2� denotes the velocity vector, p the pressure, fT ¼ ½f1; f2� the forcing term and m the kinematic
viscosity. Here it is assumed that the density equals unity. Since the pressure is through (1)–(3) or (4)–(6) only
determined up to a constant for the Stokes or Navier–Stokes equations we have to introduce an additional
condition for the pressure. One procedure is to impose the pressure at an arbitrary point of the given domain.
In [29] the pressure constant was set to zero in the point (0.5,0.5). For simplicity we impose the pressure at the
point (1,1). Another way of dealing with the pressure constant is imposing the average pressure to be zero; i.e.
Z

X
p dx ¼ 0: ð7Þ
2.1. The Stokes equations

For the Stokes equations we use for time integration a second-order BDF scheme (see, e.g. [11]): If Dt
denotes the step size in t and the index nþ 1 indicates that the functions are evaluated at the time step
tnþ1 ¼ ðnþ 1ÞDt, n ¼ 0; 1; 2; . . ., the approximation of ou

ot

� �nþ1
can be written as
3
2
unþ1 � 2un þ 1

2
un�1

Dt
: ð8Þ
Now the complete system at time step tnþ1 can explicitly be written as:
3
2Dt 0 m o

ox2

o
ox1

0 3
2Dt �m o

ox1

o
ox2

o
ox2
� o

ox1
1 0

o
ox1

o
ox2

0 0

0BBBBB@

1CCCCCA
unþ1

1

unþ1
2

xnþ1

pnþ1

0BBB@
1CCCA ¼

gnþ1
1

gnþ1
2

0

0

0BBB@
1CCCA in X; ð9Þ
where
gnþ1 ¼ 2

Dt
un � 1

2Dt
un�1:
2.2. The Navier–Stokes equations

For the Navier–Stokes equations we use an implicit and explicit scheme and compare both.

2.2.1. Implicit scheme

As proposed in [29], we apply a h-integration scheme in time combined with the Picard linearization to the
momentum equations of the unsteady Navier–Stokes equations. The subscript ‘‘0” corresponds to the results
obtained at a previous integration time step. Now the momentum equations read as follows:
u� u0

Dt
þ hðu0 � ruþrp þ mr� x� fÞ ¼ ðh� 1Þðu0 � ru0 þrp0 þ mr� x0 � f0Þ: ð10Þ
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By taking h ¼ 1, the time integration is carried out by the backward Euler method, which is only first-order
accurate in time. The second-order time integration of Crank–Nicolson can be obtained by setting h ¼ 1=2.
Since the Crank–Nicolson scheme has no damping, one often takes h ¼ 1=2þOðDtÞ. The temporal accuracy
remains second-order, and adding the small factor Dt effectively damps the small waves in spectral element
simulations. Hence, in order to obtain time-accurate solutions, one should use h ¼ 1=2þOðDtÞ. The h-scheme
is unconditionally stable for 1=2 6 h 6 1. Here we only consider stationary problems where it is recommended
to use backward Euler ðh ¼ 1Þ with large time steps to obtain steady-state solutions. Now the complete system
for each time step can explicitly be written as:
Az ¼ r; ð11Þ

where
A ¼

1
Dt þ hu1;0

o
ox1
þ hu2;0

o
ox2

0 hm o
ox2

h o
ox1

0 1
Dt þ hu1;0

o
ox1
þ hu2;0

o
ox2
�hm o

ox1
h o

ox2

o
ox2

� o
ox1

1 0

o
ox1

o
ox2

0 0

0BBBBB@

1CCCCCA;
z ¼ ðu1; u2;x; pÞT and

r ¼

f1 þ u1;0

Dt þ ðh� 1Þ u1;0
ou1;0

ox1
þ u2;0

ou1;0

ox2
þ m ox0

ox2
þ op0

ox1

h i
f2 þ u2;0

Dt þ ðh� 1Þ u1;0
ou2;0

ox1
þ u2;0

ou2;0

ox2
þ m ox0

ox1
þ op0

ox2

h i
0

0

0BBBBB@

1CCCCCA:
2.2.2. Explicit scheme

For time integration we also employ a semi-implicit scheme where the second order backward differentia-
tion scheme (8) for the viscous term is combined with a second order Adams–Bashforth scheme for the con-
vective term. Hence the momentum equations (4) at time step tnþ1 ¼ ðnþ 1ÞDt, n ¼ 0; 1; 2; . . . can be written
as:
3

2Dt
unþ1 þ mr� xnþ1 þrpnþ1 ¼ gnþ1; ð12Þ
where
gnþ1 ¼ fnþ1 � 2Cn þ Cn�1 þ 2

Dt
un � 1

2Dt
un�1 ð13Þ
with the convective term C ¼ ðu � rÞu.
Now the complete system at time step tnþ1 can explicitly be written as:
3
2Dt 0 m o

ox2

o
ox1

0 3
2Dt �m o

ox1

o
ox2

o
ox2
� o

ox1
1 0

o
ox1

o
ox2

0 0

0BBBBB@

1CCCCCA
unþ1

1

unþ1
2

xnþ1

pnþ1

0BBB@
1CCCA ¼

gnþ1
1

gnþ1
2

0

0

0BBB@
1CCCA in X: ð14Þ
The big advantage of the explicit scheme is that the system of equations must only be solved once. During time
integration we only have to compute matrix-vector multiplications which are very fast. By numerical experi-
ments we found out that for a well balanced system it is recommended to scale the momentum equations by
Dt, as in [14]. Then for the least-squares scheme the incompressibility condition is well balanced against the
momentum equations. In particular, we observed that without scaling the scheme becomes divergent for
increasing Reynolds numbers since the diagonal entries 3=2Dt become large for decreasing step size. As our
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simulations have shown the explicit scheme is much faster than the implicit one for Reynolds numbers up to
1000.

3. The least-squares spectral collocation scheme

For the spectral approximation we introduce the polynomial subspace
PN ¼ fPolynomials of degree 6 N in both variables x1; x2g:

Now all unknown functions are approximated by polynomials of the same degree N, i.e. u1, u2, x, p are

approximated by interpolating polynomials uN
1 , uN

2 , xN , pN 2 PN . Furthermore, we have to introduce the stan-
dard Chebyshev Gauss–Lobatto collocation nodes which are explicitly given by
ðni; gjÞ ¼ � cos
ip
N

� �
;� cos

jp
N

� �� �
; i; j ¼ 0; . . . ;N : ð15Þ
In the following we write the spectral derivatives. First one has to introduce the transformation matrices
from physical space to coefficient space. Since we employ a Chebyshev expansion we obtain the following
matrix:
T ¼ ðti;jÞ ¼ cos i
jp
N

� �� �
; i; j ¼ 0; . . . ;N :
Further we need the differentiation matrix in the Chebyshev coefficient space which is explicitly given bybD ¼ ðd̂ i;jÞ 2 RNþ1;Nþ1 with
d̂ i;j ¼
2j
ci
; j ¼ iþ 1; iþ 3; . . . ;N ;

0; else

(

and
ci ¼
2; i ¼ 0;

1; else:

�

Now we are able to write explicitly the spectral derivative matrix D for the first derivative which is given by
D ¼ T bDT�1 2 RNþ1;Nþ1:
The spectral operator can be efficiently evaluated by Fast Fourier Transformations (FFTs) in OðN log NÞ
arithmetic operations. We further introduce the identity matrix I 2 RNþ1;Nþ1. By tensor product representation
A� B ¼ ðAbi;jÞi;j we are now able to write the spectral derivatives:
o

ox
ffi D1 :¼ D� I ;

o

oy
ffi D2 :¼ I � D: ð16Þ
To decompose the domain X into quadrilateral elements Xi;j :¼ ðxi�1; xiÞ � ðyj�1; yjÞ, i; j ¼ 1; . . . ;K, where K2

denotes the number of elements, we define the element borders for an equidistant decomposition by
xi :¼ �1þ i
2

K
; yj :¼ �1þ j

2

K
; i; j ¼ 0; . . . ;K ð17Þ
for a Chebyshev Gauss–Lobatto (CGL) decomposition by
xi ¼ � cos
ip
K

� �
; yj ¼ � cos

jp
K

� �
; i; j ¼ 0; . . . ;K
and for a 9-d decomposition by
x0 ¼ y0 ¼ �1; x1 ¼ y1 ¼ �1þ d; x2 ¼ y2 ¼ 1� d; x3 ¼ y3 ¼ 1;
where 0 < d < 1 is a given parameter (boundary distance).
Now the collocation nodes and the differentiation matrices on the kth element are given by
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xk
i :¼ 1

2
½ðxk � xk�1Þni þ xk�1 þ xk�; yk

j :¼ 1

2
½ðyk � yk�1Þgj þ yk�1 þ yk�
and
D1;k :¼ �2

xk � xk�1

D1; D2;k :¼ �2

yk � yk�1

D2
with i; j ¼ 0; . . . ;N , k ¼ 1; . . . ;K2.Fig. 1 shows the spectral element mesh for K2 ¼ 9 equidistant elements,
K2 ¼ 9 CGL elements and 9-d elements with d ¼ 10�1. In each case the polynomial degree is N ¼ 8.

Next we have to realize the discrete formulation of Eqn. (7). This is performed by the Clenshaw–Curtis
quadrature rule (see, e.g. [23]):
Z

X
p dx ffi

XN

i¼0

XN

j¼0

xixjpðni; gjÞ;
where X ¼ ½�1; 1�2 denotes the standard domain, ðni; gjÞ the Chebyshev Gauss–Lobatto nodes on X and
xi :¼

1
N2�1

; i 2 f0;Ng;

4
N

PN2
j¼0

1
�cj

cos 2pij
Nð Þ

1�4j2 ; 1 6 i 6 N � 1

8><>:

with
�cj :¼
2; j 2 f0;N=2g;
1; 1 6 j 6 N=2� 1

�

the integrations weights.
. 1. (a) Equidistant; (b) CGL and (c) 9-d ðd ¼ 10�1Þ spectral element mesh for K2 ¼ 9 elements and polynomial degree N ¼ 8.
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We use the Clenshaw–Curtis quadrature rule since this is the appropriate quadrature rule for the Cheby-
shev Gauss–Lobatto nodes.

One could also use Gauss Legendre or Gauss Lobatto–Legendre nodes. In the numerical results there is no
big difference. The advantage of the Chebyshev nodes is the fact that they are explicitly given and fast Fourier
transforms (FFT) are available.
4. The discrete linear system of equations

At the interfaces between the elements, we require (as Heinrichs in [16]) continuity of both the functions
and normal derivatives of u1, u2. For p we only require continuity and for x we do not explicitly require inter-
face conditions.

The corresponding discrete system of differential equations together with the discrete boundary and discrete
interface conditions are written into a matrix A and compiled into an overdetermined system Az ¼ r where the
matrix A is given by
A ¼

A1

. .
.

AK2

MI

B

0BBBBBBB@

1CCCCCCCA: ð18Þ
Here Ak 2 R4ðNþ1Þ2;4ðNþ1Þ2 , k ¼ 1; . . . ;K2, denotes the discrete version of the matrix in (9) or (11) or (14) depend-
ing on which equations are considered. The matrix MI 2 R10ðNþ1ÞðK2�KÞ;4K2ðNþ1Þ2 represents the discrete interface
conditions and B 2 R8NK;4K2ðNþ1Þ2 the given discrete boundary conditions for the velocity components u1 and u2

(see [21]). Since the pressure is only determined up to a constant we have to regularize the matrix A. One way is
to cancel one condition for the pressure, i.e. we impose the pressure in one point. This matrix is denoted by eA.
For simplicity we cancel the last row and the last column of A and so we impose the pressure in the point ð1; 1Þ
of the boundary. The disadvantage of this approach is, we do not know the pressure in one point for the
regularized or lid-driven cavity flow. Nevertheless, in [29] the pressure constant was imposed to be zero in
the middle of the cavity. This is a possible approach but since we want to discuss the incompressible (e.g.
the integral over the pressure is equal zero) Navier–Stokes equations it seems to be the better way using
(7). As our computations show we obtain smaller condition numbers of the linear system of equations using
the discrete version of the additional pressure condition (7). Using this approach we obtain one additional row
for the matrix A in (18) and denote this new matrix by bA. The additional 1� 4K2ðN þ 1Þ2 matrix MP is given
by
MP :¼ ð0; 0; 0;H; 0; 0; 0;H; . . . ; 0; 0; 0;H; 0; 0; 0;HÞ;

where H (vector of length ðN þ 1Þ2) denotes the corresponding ðN þ 1Þ2 quadrature weights of the Clenshaw–
Curtis quadrature formula and 0 a zero vector of length ðN þ 1Þ2. Since we particularly enforce the collocation
conditions on the interfaces and on the boundary oX and we additionally enforce the pointwise continuity
on the interfaces (represented by matrix MI ) and enforce the values of the velocity on the boundary (repre-
sented by matrix B) we get a really over-determined system. In order to verify that we achieve really over-
determined linear systems of equations we compute the rank of eA ðrankðeAÞÞ and the rank of ½eA j r�
ðrankð½eA j r�Þ), i.e. the augmented matrix where we add the right hand side r as one column. The results of
this computations are
rankð½eA j r�Þ ¼ rankðeAÞ þ 1 > rankðeAÞ

and this shows r 62 RðeAÞ, where RðeAÞ is the range of the matrix eA. For the matrix bA we obtain the same re-
sults. Hence, the systems are really over-determined and we need least-squares techniques to solve these linear
systems of equations.

For the solution of the systems Heinrichs used, e.g. in [14–16] the normal equations ATAz ¼ ATr.
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It is well-known that the spectral derivative martices D have relatively large condition numbers
j2ðDÞ ¼
max
kxk2¼1

kDxk2

min
kxk2¼1

kDxk2
and the use of the corresponding normal equations lead to systems with even larger condition numbers
ðj2ðDTDÞ ffi j2ðDÞ2Þ. Because of the round-off errors and the large condition numbers of the systems one
cannot obtain the best quality of approximations. Here we want to avoid the normal equations to get bet-
ter approximations and so we make use of a direct solver for the system Az ¼ r by using the QR decomposi-
tion (computed with MATLAB 7.3.0), see, e.g. [30], of the matrix A where we achieved the following
system:
Az ¼ r() QRz ¼ r:
If A 2 Rm;n with m > n then Q 2 Rm;m is an orthogonal matrix (i.e. Q�1 ¼ QT) and R 2 Rm;n is an upper trian-
gular matrix of the type
R ¼
eR
~0

" #
; eR 2 Rn;n; ~0 2 Rm�n;n:
Consequently, we obtain
w :¼ QTr; Rz ¼ w:
Furthermore, we used the pseudoinverse, see, e.g. [30] (also known as Moore–Penrose inverse) Aþ of the ma-
trix A to solve the system Az ¼ r. The numerical experiments have shown that the approximation results by
using the pseudoinverse are the same as using QR decomposition. The disadvantages of using pseudoinverses
are higher computational costs (see Fig. 5). Form a theoretical point of view it is clear that all of the three
solution techniques are equivalent if exact arithmetic is used. But since our linear systems of equations have
very large condition numbers, the three techniques will not necessarily lead to the same results because of the
influence of round-off errors.

The subject of a future project will be the development of some iterative solvers like incomplete QR decom-
positions. The problem of such iterative solvers is that they operate on the normal equations and that means
the considered linear system of equations again have larger condition numbers.

5. Numerical simulations

We consider the steady and unsteady Stokes equations and the Navier–Stokes equations. For the Stokes
equations we use our scheme only on equidistant elements since the other decompositions of the domain will
not necessarily lead to better approximation results.

For the Navier–Stokes equations we first consider a smooth example on equidistant elements and then
apply our scheme to the regularized and lid-driven cavity problem. For the regularized and lid-driven cavity
problem we use our scheme on equidistant, CGL and 9-d elements and compare the results.

5.1. The steady Stokes equations

First, we consider the steady case of the Stokes equations. Fig. 2 shows the condition numbers j2ðbAÞ, j2ðeAÞ
and j2ðbATbAÞ for K2 ¼ 4, K2 ¼ 36 and K2 ¼ 64 elements with different polynomial degrees N. For higher ele-
ment numbers and high polynomial degrees we do not list the condition numbers because of the influence of
the round-off errors.

The condition numbers are rigorously reduced if we do not use the normal equations. A further reduction
of the condition numbers is obtained if we use the Clenshaw–Curtis quadrature rule to avoid the pressure con-
stant instead of cancelling one row and one column of the complete system matrix.

For other parameters K2 and N we obtain similar results and so we do not list them here.



Fig. 2. Condition numbers for: (a) K2 ¼ 4; (b) K2 ¼ 36 and (c) K2 ¼ 64 equidistant elements and different polynomial degrees N (j2ðbAÞ, �;
j2ðeAÞ, 	; j2ðbATbAÞ, 
).
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The convergence rates of the least-squares spectral collocation scheme are demonstrated by means of the
model problem also introduced in [11] with m ¼ 1. The exact velocity components and the pressure are defined
on the square X :¼ ½�1; 1�2 by
u1ðx; y; tÞ :¼ cosðctÞ sin
px
2

� �
cos

py
2

� �
; ð19Þ

u2ðx; y; tÞ :¼ � cosðctÞ cos
px
2

� �
sin

py
2

� �
; ð20Þ

pðx; y; tÞ :¼ 1

4
cos2ðctÞðcosðpxÞ þ cosðpyÞÞ þ 10ðxþ yÞ cosðctÞ: ð21Þ
This exact solution satisfies the Stokes equations if the following forcing term is used
fðx; y; tÞ ¼
m p2

2
cosðctÞ sin px

2

� �
cos py

2

� �
�m p2

2
cosðctÞ cos px

2

� �
sin py

2

� � !
�

p
4

cos2ðctÞ sinðpxÞ � 10 cosðctÞ
p
4

cos2ðctÞ sinðpyÞ � 10 cosðctÞ

 !

þ
�c sinðctÞ sin px

2

� �
cos py

2

� �
c sinðctÞ cos px

2

� �
sin py

2

� � !
: ð22Þ
For the steady case of the Stokes equations we set c ¼ 0.
We use the QR decomposition of the matrix bA to solve the discrete algebraic systems and numerically cal-

culate the discrete L2-error norms of the velocity components and the pressure. The corresponding numerical
results are presented in the Tables 1–3.

Tables 1–3 show the high spectral accuracy of our scheme if the number of elements is constant and the
polynomial degree increases. If we compare the approximation errors of the same polynomial degree with dif-
ferent numbers of elements we observe the expected slight improvement in the results.



Table 1
L2-errors of the velocity components and the pressure on K2 ¼ 4 equidistant elements

N ku1 � uN
1 kL2 ku2 � uN

2 kL2 kp � pNkL2

N ¼ 2 1:797� 10�1 1:809� 10�1 6:088� 10�1

N ¼ 4 3:082� 10�3 3:042� 10�3 5:869� 10�2

N ¼ 6 1:340� 10�4 1:311� 10�4 7:061� 10�3

N ¼ 8 2:885� 10�6 2:844� 10�6 1:939� 10�4

N ¼ 10 1:938� 10�8 1:936� 10�8 2:008� 10�6

N ¼ 12 5:621� 10�11 5:622� 10�11 8:636� 10�9

N ¼ 14 4:425� 10�13 4:689� 10�13 4:852� 10�11

N ¼ 16 4:316� 10�13 4:041� 10�13 2:316� 10�11

N ¼ 18 5:207� 10�13 4:977� 10�13 8:734� 10�11

N ¼ 20 6:956� 10�13 7:618� 10�13 8:395� 10�11

Table 2
L2-errors of the velocity components and the pressure on K2 ¼ 36 equidistant elements

N ku1 � uN
1 kL2 ku2 � uN

2 kL2 kp � pNkL2

N ¼ 2 4:280� 10�2 4:434� 10�2 4:128� 10�1

N ¼ 4 4:101� 10�5 4:448� 10�5 1:264� 10�3

N ¼ 6 3:285� 10�7 3:147� 10�7 1:082� 10�5

N ¼ 8 9:049� 10�10 8:933� 10�10 8:119� 10�8

Table 3
L2-errors of the velocity components and the pressure on K2 ¼ 64 equidistant elements

N ku1 � uN
1 kL2 ku2 � uN

2 kL2 kp � pNkL2

N ¼ 2 2:711� 10�2 2:884� 10�2 3:382� 10�1

N ¼ 4 1:425� 10�5 1:562� 10�5 5:011� 10�4

N ¼ 6 6:291� 10�8 6:072� 10�8 2:335� 10�6

Fig. 3. L2-error of: (a) the velocity component u1 and (b) the pressure, obtained by the normal equations and by the QR decomposition on
K2 ¼ 36 equidistant elements.
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Table 1 obviously shows the influence of round-off errors for N P 16.
In the Figs. 3 and 4 we compare the approximation errors by solving the normal equations bATbAz ¼ bAT r and

by solving the system bAz ¼ r with QR decomposition. We obtain the same errors if the polynomial degree is
low, i.e. N ¼ 2; 4, but if the polynomial degree increases the errors obtained by normal equations increase if a
particular N is exceeded. The reason of this behaviour are the high condition numbers of the normal equations
and thus the strong influence of round-off errors. Errors obtained by QR decomposition still decrease for
increasing N. By using QR decomposition we avoid the very high condition numbers and so we obtain the
improved approximations.



Fig. 4. L2-error of: (a) the velocity component u1 and (b) the pressure, obtained by the normal equations and by the QR decomposition on
K2 ¼ 64 equidistant elements.
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Since we have an analogue performance of the velocity component u2 we here just show the results for u1.
Next we check the numerical results obtained by solving the system of equations with the pseudoinverse bAþ

of the matrix bA. We got the same numerical results as by using QR decomposition and so we do not show the
results here.

For comparing computational costs we show in Fig. 5 the required CPU-times for solving the system of
equations by normal equations, QR decomposition and pseudoinverse. All results are computed with MAT-
LAB 7.3.0 with the following code:

� normal equations: z ¼ ðbA0 	 bAÞ n ðbA 0 	 rÞ
Fig. 5. CPU-time required for solving the system of linear equations with pseudoinverse (�), QR decomposition (s) and the normal
equations (	) on: (a) 4, (b) 36 and (c) 64 equidistant elements.
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� QR decomposition: z ¼ bA n r
� pseudoinverse: z ¼ pinvðbAÞ 	 r

Since the use of the pseudoinverse needs extremely more time and produces same accuracy as the use of QR
decomposition we only used QR decomposition for solving the systems. The application of normal equations
is less expensive but the quality of approximation is worse than the one obtained by using QR decomposition.
Furthermore, for time-dependent Stokes or Navier–Stokes problems we use an explicit scheme and so the QR
decomposition of the linear system of equations must only be computed once. Hereafter, only matrix-vector
multiplications are performed. In the following section we apply our scheme to the unsteady Stokes equations.

5.2. The unsteady Stokes equations

Now we consider the unsteady case of the Stokes equations. The exact velocity components and the pres-
sure are defined as in (19)–(21), the corresponding forcing term by (22) and we recall that m ¼ 1

Re where Re

denotes the Reynolds number. Because we consider the unsteady case we set c ¼ 5 as in [11]. From [14] it
is known that for a well balanced system it is recommended to scale the momentum equations by Dt. By
numerical experiments we observed the same. Without scaling the incompressibility condition is no more ful-
filled after time integration. Fig. 6 shows kr � uk on K2 ¼ 4 equidistant elements with N ¼ 10, Re ¼ 1 and
Dt ¼ 1

58
in case without scaling. In the scaled case we obtain a stable scheme. Figs. 7 and 8 show the temporal

evolution of the L2-errors in the velocity components and in the pressure. We observe no enlargement of the
oscillating errors in time, expressing stability of the numerical solution.

Since the numerical results in the unsteady case are similar to those in the steady case we here only show a
few results. In Table 4 we demonstrate the condition numbers of the matrices bA and recall that
j2ðbATbAÞ ffi j2ðbAÞ2.

In the Tables 5–7 we show the approximation errors for the unsteady case of the Stokes equations and we
see the good performance of the here presented scheme for time-dependent Stokes problems. The time deriv-
ative is approximated by the second order BDF scheme (8). We set
Fi
Eu1
:¼ maxfku1 � uN

1 kL2 : t 2 ½0; 1�g;
Eu2

:¼ maxfku2 � uN
2 kL2 : t 2 ½0; 1�g;

Ep :¼ maxfkp � pNkL2 : t 2 ½0; 1�g;
since Figs. 7 and 8 show that the maximum error is obtained in [0,1].
g. 6. Temporal evolution of kr � uk on K2 ¼ 4 equidistant elements with N ¼ 10, Re ¼ 1, Dt ¼ 1
58

in the case without scaling.



Fig. 7. Temporal evolution of the velocity error for Re ¼ 100, Dt ¼ 1
1000

and N ¼ 10 on K2 ¼ 4 equidistant elements.

Fig. 8. Temporal evolution of the pressure error for Re ¼ 100, Dt ¼ 1
1000

and N ¼ 10 on K2 ¼ 4 equidistant elements.

Table 4
Condition numbers of the scaled matrix bA on K2 ¼ 4 equidistant elements with N ¼ 10, different Reynolds numbers and different time
steps

Re Dt j2ðbAÞ
100 1

10 3:1067� 104

100 1
100 9:0105� 104

1000 1
100 8:7253� 104
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Since we use a second order scheme in time, the ratio of, e.g. Eu1
with time step size h and Eu1

with time step
size h=2 must approximate 2k ¼ 4, where k ¼ 2 denotes the order of the scheme.



Table 5
Approximation errors on K2 ¼ 4 equidistant elements with N ¼ 10 and Re ¼ 1

Dt Eu1
¼ Eu2

Ratio Ep Ratio

1
10 2:885� 10�3 – 2:496� 10�1 –
1

20 7:386� 10�4 3.906 6:331� 10�2 3.943
1

40 1:858� 10�4 3.975 1:586� 10�2 3.992
1

80 4:657� 10�5 3.990 3:973� 10�3 3.992

Table 6
Approximation errors on K2 ¼ 36 equidistant elements with N ¼ 8 and Re ¼ 100

Dt Eu1
¼ Eu2

Ratio Ep Ratio

1
10 1:326� 10�1 – 5:354� 10�1 –
1

20 3:563� 10�2 3.722 1:358� 10�1 3.943
1

40 9:085� 10�3 3.922 3:404� 10�2 3.989
1

80 2:281� 10�3 3.983 8:532� 10�3 3.990

Table 7
Approximation errors on K2 ¼ 64 equidistant elements with N ¼ 6 and Re ¼ 100

Dt Eu1
¼ Eu2

Ratio Ep Ratio

1
10 1:890� 10�1 – 7:322� 10�1 –
1

20 5:067� 10�2 3.730 1:855� 10�1 3.947
1

40 1:292� 10�2 3.922 4:656� 10�2 3.984
1

80 3:244� 10�3 3.983 1:166� 10�2 3.993
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5.3. The Navier–Stokes equations

Now we apply our scheme to a smooth example for the steady Navier–Stokes equations where the velocity
and the pressure are given by (19)–(21) with c ¼ 0 and X ¼ ½0; 1�2. Since we have seen that the additional pres-
sure condition leads to linear system of equations with smaller condition numbers we will only use the matricesbA. Furthermore, we have seen that solving the linear systems of equations with QR decomposition leads to
better approximations. Hence, we will now only use the QR decomposition for solving the linear systems
of equations.

Since the numerical results for the velocity component u2 are similar to those of the velocity component u1

we show only the results for u1. All results are obtained by the explicit scheme.
In Fig. 9 we show the L2-error norms of the velocity component u1 and the pressure on 64 equidistant ele-

ments with Re ¼ 1.
In Fig. 10 we show the L2-errors for the velocity component u1 and for the pressure on 64 CGL elements

with Re ¼ 1. Fig. 11 shows the L2-errors for the velocity component u1 and for the pressure on 9-d elements
with Re ¼ 1 and d ¼ 10�1. Figs. 9–11 show the high spectral accuracy of our scheme on all here considered
domain decompositions. In Fig. 11 we observe the influence of round-off errors for N P 14.

5.4. The regularized cavity flow

Now we set X :¼ ð0; 1Þ2 and consider the regularized cavity flow (see [4]) where the fluid velocity on the edge
y ¼ 1 is given by
u1ðx; 1Þ :¼ �16x2ð1� xÞ2; u2ðx; 1Þ :¼ 0 ð23Þ

and u1 ¼ u2 ¼ 0 on the other three edges. The forcing term f is identical to zero. As Botella in [4] we consider
that the steady state is reached when



Fig. 9. L2-error of: (a) the velocity component u1 and the (b) the pressure on K2 ¼ 64 equidistant elements with Re ¼ 1.

Fig. 10. L2-error of: (a) the velocity component u1 and the (b) the pressure on K2 ¼ 64 CGL elements with Re ¼ 1.

Fig. 11. L2-error of: (a) the velocity component u1 and the (b) the pressure on 9-d elements with Re ¼ 1 and d ¼ 10�1.
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max
i;j
j xnþ1

i;j � xn
i;j j

Dt �max
i;j
j xnþ1

i;j j
6 2� 10�6: ð24Þ
Hereafter we calculate the stream function by solving the equation
Dw ¼ �x in X ¼ ð0; 1Þ2;
w ¼ 0 on oX:

ð25Þ
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Solving this equation we first transform (25) into an equivalent first-order system. This system with the point-
wise enforced continuity on the element interfaces and the boundary conditions lead to an overdetermined
system that is solved by our least-squares scheme. As the simulations have shown it is recommended to scale
the boundary conditions of (25) by kAstream

1 k1, otherwise the streamfunction is not accurately zero on the
boundary oX since the boundary conditions are not well balanced against the other conditions. Here Astream

1

denotes the spectral system matrix of the first-order system of (25) on the first element (lower left corner).
Computations to solve (25) are performed with the QR decomposition, too.

In order to compare our results with those of Botella in [4], we calculate the maximal value of w on the
collocation points of X, denoted by M1. Furthermore, we computed the maximal value of x on the edge
y ¼ 1. This value is denoted by M2. The benchmarks are shown in the last row of the tables.

Table 8 shows the results for Re ¼ 100 on equidistant and CGL elements. The coordinates of the point
where the values are reached are given in brackets.

Comparing our results with the results of Botella, we see the good performance of our scheme. Further-
more, we see that our scheme on CGL elements leads to better results than on equidistant elements. The rea-
son is that the CGL elements are closer to the boundary and this is the area where the functions are not as
smooth as in the middle of the cavity.

In the approach of Botella, there are only two unknown functions and one element with N ¼ 48, which
results in 2 � 2401 degrees of freedom. For a similar accuracy, the least-squares approach requires 64 elements
with N ¼ 6, which results in 4 � 3136 d.o.f. Hence our scheme is more expensive for the regularized cavity flow.
But for more complex geometries and singularities (e.g. the lid-driven cavity, see Section 5.5), our approach is
more favorable.

Next we perform our scheme on 9-d elements for various d. The results are shown in Table 9. For singular
perturbation problems it is well-known that one has to take d ffi N � e where e denots the diffusion parameter.
For the Navier–Stokes equations ðe ¼ m ¼ 1=ReÞ it is not clear how to choose d and so we have chosen
d ¼ N � m ¼ N=Re in the first row of Table 9 and in the other rows we have chosen different d. As Table 9 shows
it seems to be the best choice to choose d ¼ 0:18 or d ¼ 0:1 depending on what should be approximated better
(M1 or M2). Comparing Tables 8 and 9 we see that the CGL elements are preferable. The approximations of
the benchmarks show the well-known different performance for various d.

In Table 10 we check our scheme for Re ¼ 400 on equidistant and CGL elements and compare our approx-
imations with the corresponding results of Botella in [4].

Since the vorticity x has strong variation on the points of the edge y ¼ 1 and is not as smooth as the stream
function w we do not obtain such good approximations of M2 compared to the approximations of M1. Fur-
thermore, the CGL elements lead to better results than the equidistant ones.

In Table 11 we show the results for the 9-d decomposition for various d with Re ¼ 400. As in Table 9 the
first row of Table 11 shows the results for d ¼ N=Re. In the other rows of Table 11 we show the results for
Table 8
The regularized cavity flow with Re ¼ 100

K2 N M1 M2 Dt Elements

64 6 8:36� 10�2 (0.38/0.76) 13.48 (0.62) 1/50 Equidistant
64 6 8:33� 10�2 (0.40/0.77) 13.32 (0.60) 1/50 CGL
1 48 8:34� 10�2 (0.40/0.74) 13.34 (0.60) [4]

Results with explicit time integration on equidistant and CGL elements with polynomial degree N ¼ 6 and time step size Dt ¼ 1=50.

Table 9
The regularized cavity flow with Re ¼ 100

d M1 M2

0.18 8:36� 10�2 (0.39/0.75) 13.42 (0.61)
0.1 8:31� 10�2 (0.36/0.76) 13.38 (0.64)
0.075 8:26� 10�2 (0.43/0.77) 13.30 (0.65)
[4] 8:34� 10�2 (0.40/0.74) 13.34 (0.60)

Results with explicit time integration on 9-d elements with polynomial degree N ¼ 18 and time step size Dt ¼ 1=50.



Table 10
The regularized cavity flow with Re ¼ 400

K2 N M1 M2 Dt Elements

64 6 8:63� 10�2 (0.44/0.62) 25.61 (0.62) 1/100 Equidistant
64 6 8:55� 10�2 (0.40/0.60) 24.81 (0.64) 1/100 CGL
1 48 8:55� 10�2 (0.40/0.60) 24.78 (0.65) [4]

Results with explicit time integration on equidistant and CGL elements with polynomial degree N ¼ 6 and time step size Dt ¼ 1=100.

Table 11
The regularized cavity flow with Re ¼ 400

d M1 M2

0.045 8:52� 10�2 (0.42/0.58) 24.58 (0.66)
0.075 8:55� 10�2 (0.43/0.65) 24.78 (0.65)
0.1 8:56� 10�2 (0.43/0.64) 24.88 (0.64)
[4] 8:55� 10�2 (0.40/0.60) 24.78 (0.65)

Results with explicit time integration on 9-d elements with polynomial degree N ¼ 18 and time step size Dt ¼ 1=100.
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various d. Comparing the values of Table 11 it seems to be the best choice to choose d ¼ 0:075. Again, the
approximations of the benchmarks show the well-known different performance for various d.

Comparing Tables 8, 9 and 10, 11 we see that the CGL elements are especially preferable for increasing
Reynolds numbers.

Obviously, our explicit scheme works well for Reynolds numbers up to 400. Nevertheless, we have per-
formed our computations with the implicit scheme introduced in Section 2.2 on 4, 9, 16 and 25 equidistant
elements and compared the results obtained with the explicit scheme. We have seen that the implicit scheme
leads to the same approximation results. The well-known disadvantage of the implicit scheme is that we have
to solve the linear systems of equations in each time step. This requires a lot of CPU-time. The number of
Picard iterations is 6 in the first time step and two in the last time step. From the literature it is well-known
that these are the usual numbers of linearization steps for the implicit scheme.

5.5. The lid-driven cavity flow

Now we numerically solve the lid-driven cavity flow problem where the fluid velocity on the edge y ¼ 1 is
given by
u1ðx; 1Þ :¼ �1; u2ðx; 1Þ :¼ 0
and u1 ¼ u2 ¼ 0 on the other three edges. The source term f is identical to zero.
Since the velocity is discontinuous at the two upper corners Að0; 1Þ and Bð1; 1Þ of the square box X ¼ ð0; 1Þ2

the solution of the Navier–Stokes equations becomes singular at these corners. In particular, the vorticity and
the pressure becomes infinite at these two points. Because of the sharp gradients of the variables and the sin-
gularities at these corners the lid-driven cavity flow is a difficult test case. Furthermore, there are singularities
at the points Cð0; 0Þ and Dð1; 0Þ but they are much more weaker than the ones at A and B since only the sec-
ond derivatives of the pressure and the vorticity are unbounded.

Here we understand the lid-driven cavity flow as an stationary problem and, as in [5], we assume that the
steady state is reached if
max j /nþ1 � /n j
Dt �max j /nþ1 j

6 10�8; ð26Þ
where / :¼ ðu1; u2ÞT. When (26) is fulfilled we calculate the stream function w by
� Dw ¼ x in X ¼ ð0; 1Þ2;
w ¼ 0 on oX:

ð27Þ
Computations to solve (27) are performed as in the previous section.
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For the regularized cavity flow we have seen that the explicit scheme is preferable compared to the implicit
scheme since it leads to the same approximation results with an enormous less amount of computing time.
Hence, we here present only the results obtained with the explicit scheme.

In Table 12 we show the extrema of the velocity components on the centerlines x ¼ 0:5 and y ¼ 0:5 and
xð0:5; 0:5Þ for Re ¼ 100 on equidistant and CGL elements with N = 6. In the last row of the tables we show
the corresponding benchmarks of Botella and Peyret in [5]. Comparing our results with the benchmarks in
Table 12 we again see the good performance of our scheme. Furthermore, we see that for Re ¼ 100 we do
not obtain analog improvements on CGL elements as for the regularized cavity flow. The reason is that
the CGL elements are bigger than the equidistant ones in the middle of the cavity and if the Reynolds number
is relatively low the solution is not as smooth as for higher Reynolds numbers in the middle of the cavity. That
means, the non-smooth parts extend more into the cavity. As a result of this, we expect better approximations
on CGL elements than on equidistant elements if we increase the Reynolds number since then the non-smooth
parts do not extend so far into the cavity.

In Table 13 we show the results for the 9-d decomposition for various d. As for the regularized cavity flow
we have chosen d ¼ N=Re in the first row of Table 13. In the other rows we show the results for various d.
Table 13 shows that it seems to be the best choice to choose d ¼ 0:10 to obtain good approximations for
all values. The approximations of the benchmarks show the well-known different performance for various d.

Comparing Tables 12 and 13 we see the better performance of our scheme on equidistant elements.
Next, we check our scheme for Re ¼ 1000. Table 14 shows the extrema of the velocity components on the

centerlines x ¼ 0:5 and y ¼ 0:5 for Re ¼ 100 on equidistant and CGL elements with N = 6. Comparing our
results with the benchmarks we see the good approximations obtained by our scheme. Furthermore, we see
that the CGL elements lead to extremely better results. The reason that our values are not as good as the
benchmarks is that we have placed all variables in the singularities. However, in [5] a subtraction method
was used. More precisely, a subtraction method of the leading terms of the asymptotic expansion of the solu-
tion in the vincinity of the corners, where the velocity is discontinuous, was used.
Table 12
Extrema of the velocity for the lid-driven cavity flow through the centerlines x ¼ 0:5 and y ¼ 0:5 of the cavity and xð0:5; 0:5Þ for Re ¼ 100
on 64 equidistant and CGL elements

u1;max, ymax u2;max, xmax u2;min, ymin xð0:5; 0:5Þ Dt Elements

0.211, 0.469 0.178, 0.758 �0.253, 0.188 1.173 1/50 Equidistant
0.212, 0.452 0.178, 0.772 �0.251, 0.187 1.160 1/50 CGL
0.214, 0.458 0.180, 0.763 �0.254, 0.190 1.174 [5]

Table 14
Extrema of the velocity for the lid-driven cavity flow through the centerlines x ¼ 0:5 and y ¼ 0:5 of the cavity for Re ¼ 1000 on 64
equidistant and CGL elements

u1;max, ymax u2;max, xmax u2;min, ymin Dt Elements

0.500, 0.188 0.497, 0.867 �0.640, 0.094 1/300 Equidistant
0.397, 0.157 0.391, 0.843 �0.538, 0.092 1/300 CGL
0.389, 0.172 0.377, 0.842 �0.527, 0.091 [5]

Table 13
Extrema of the velocity for the lid-driven cavity flow through the centerlines x ¼ 0:5 and y ¼ 0:5 of the cavity and the value of the vorticity
in the middle of the cavity for Re ¼ 100 on 9-d elements with polynomial degree N ¼ 18 and time step size Dt ¼ 1=50

d u1;max, ymax u2;max, xmax u2;min, ymin xð0:5; 0:5Þ
0.18 0.212, 0.444 0.178, 0.777 �0.252, 0.185 1.168
0.10 0.211, 0.431 0.179, 0.757 �0.253, 0.194 1.171
0.075 0.211, 0.426 0.179, 0.773 �0.252, 0.174 1.172
0.05 0.210, 0.422 0.178, 0.789 �0.250, 0.211 1.172
[5] 0.214, 0.458 0.180, 0.763 �0.254, 0.190 1.174



Table 15
Extrema of the velocity for the lid-driven cavity flow through the centerlines x ¼ 0:5 and y ¼ 0:5 of the cavity for Re ¼ 1000 on 9-d
elements with polynomial degree N ¼ 18 and time step size Dt ¼ 1=500

d u1;max, ymax u2;max, xmax u2;min, ymax

0.018 0.383, 0.190 0.367, 0.810 �0.519, 0.083
0.075 0.385, 0.174 0.371, 0.826 �0.517, 0.101
0.10 0.383, 0.194 0.377, 0.846 �0.528, 0.093
[5] 0.389, 0.172 0.377, 0.842 �0.527, 0.091

Fig. 13. Velocity profile of the lid-driven cavity flow for Re ¼ 1000 on 64 CGL elements with polynomial degree 6 and time step size 1/300.

Fig. 12. Stream function of the lid-driven cavity flow for Re ¼ 1000 on 64 CGL elements with polynomial degree 6 and time step size
1/300.
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Table 15 shows the results obtained on 9-d elements with polynomial degree N ¼ 18 and time step size
Dt ¼ 1=500 for Re ¼ 1000. Choosing bigger time step sizes leads to a divergent scheme. Since we consider sta-
tionary problems, the time step size does not influence the values of our computations.

The first row of Table 15 shows the results for d ¼ N=Re. Here it seems to be the best choice to choose
d ¼ 0:10 to obtain good approximations for all values. Again, the approximations of the benchmarks show
the well-known different performance for various d.

Comparing Tables 14 and 15 we see the better performance of our scheme on 9-d elements. The disadvan-
tage of 9-d elements is that we have to choose d carefully.

Comparing the results for the regularized and lid-driven cavity flow we recommend to use CGL elements
since they lead to good approximations and they are not depending on a parameter that has to be chosen as
for the 9-d elements.

In Fig. 12 we show the stream function of the lid-driven cavity flow for Re ¼ 1000 on 64 CGL elements with
polynomial degree N ¼ 6 and time step size Dt ¼ 1=300. In Fig. 13 we show the velocity profile of the lid-dri-
ven cavity flow for Re ¼ 1000 on 64 CGL elements with polynomial degree N ¼ 6 and time step size
Dt ¼ 1=300.

6. Conclusion

We presented a least-squares spectral collocation scheme for the steady and unsteady Stokes equations and
for the incompressible Navier–Stokes equations where the original domain has been decomposed into quad-
rilateral subelements. To avoid high condition numbers of normal equations a direct solver (QR decomposi-
tion of the matrices) was used for the overdetermined systems. The numerical simulations confirm the high
accuracy of the proposed spectral least-squares scheme and solving the overdetermined systems with QR
decomposition yields better approximation results. The computational cost of QR decomposition is higher
than using normal equations. Using pseudoinverse shows same results as using QR decomposition but causes
much higher computational costs.

In the unsteady case of the Stokes equations we have shown the good performance of the here presented
scheme for different Reynolds numbers, different time steps and various numbers of elements.

Furthermore, we applied our scheme successfully to the regularized and lid-driven cavity flow problems
where we achieved good results.
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